

Tucano Comércio de Alarmes e Sistemas Eletrônicos Ltda www.tucanobrasil.com.br tucano@tucanobrasil.com.br Fone/fax: (41) 3286-2867

Tecnologia em Segurança - Soluções em Eletrônica

RECOMENDAÇÃO: Para instalação da central, recomendamos a utilização do cabo C7024xx, que é fabricado de acordo com as recomendações técnicas da BOSCH

Atualização dos dispositivos multiplex da Central de Alarme de Incêndio D7024

1. INTRODUÇÃO

Os dispositivos multiplex D7039, D7044/M, D7052, D7053, D7050/TH e FMM-7045/D foram atualizados com o intuito de aumentar a qualidade do produto, melhorando a relação sinal/ruído e aumentando a imunidade a interferências eletromagnéticas.

O módulo multiplex D7039 com a versão 1.04 (ROM) já possui estas alterações. Este módulo é compatível com as Centrais D7024 que possuam a versão de firmware 2.05 ou superior.

Em relação aos outros dispositivos segue abaixo a lista com os modelos e seus respectivos lotes iniciais de produção com as modificações:

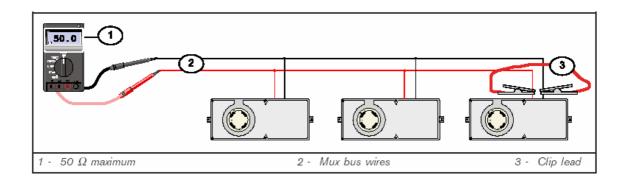
- D7044 Lote #118C
- D7044M Lote #80C
- D7050 Lote #249C
- D7050TH Lote #249C
- D7052 Lote #44C
- FMM-7045 Todos os lotes
- FMM-7045D Todos os lotes

2. MÓDULO MULTIPLEX D7039

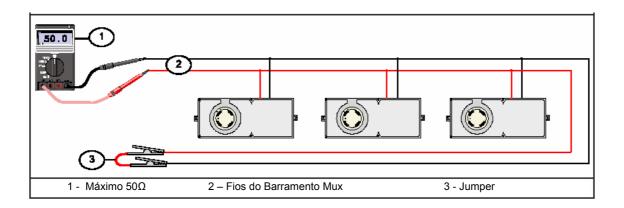
Junto a estas atualizações devem ser feitas mudanças significativas na forma de instalação do sistema multiplex da Central de Alarme de Incêndio D7024. Segue abaixo as especificações:

Especificações do Módulo D7039:	
Tensão Máxima do Mux	8,5 a 13VDC
Resistência Máxima do Cabeamento de um circuito Classe A	50 Ω
Máxima Resistência do Cabeamento de cada um dos dois circuitos Classe B	50 Ω

^{*}Abaixo, segue o boletim técnico da BOSCH


Tucano Comércio de Alarmes e Sistemas Eletrônicos Ltda www.tucanobrasil.com.br tucano@tucanobrasil.com.br Fone/fax: (41) 3286-2867

Tecnologia em Segurança - Soluções em Eletrônica



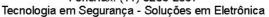
Segue abaixo os procedimentos de medição de resistência dos circuitos:

CIRCUITO CLASSE B

CIRCUITO CLASSE A

3. CABEAMENTO

A partir destas atualizações, DEVEM ser ignoradas quaisquer tabelas de cabos em relação à distância anteriormente divulgados, pois, estas atualizações modificaram todos os parâmetros.


O cabeamento deve estar contido dentro de eletrodutos de aço galvanizado (rosqueado) com continuidade do inicio ao fim, para que exista uma perfeita continuidade elétrica e uma mesma referência à TERRA; este TERRA deve ser o mesmo que está sendo utilizado pela Central de Alarme D7024 seguindo a norma de instalações elétricas (NBR5410). Os condutores elétricos utilizados nesses circuitos devem ser preferencialmente rígidos e, quando flexíveis as extremidades de conexão devem ser "estanhadas" e/ou climpados terminais apropriados. Para o dimensionamento elétrico dos condutores, a máxima queda de tensão admissível é de 5% para os circuitos de detecção e de 10% para os de alarme (sirenes)

Não são permitidas emendas dentro de eletrodutos, condutos, caixas de ligação ou conduletes. Quando necessárias devem ser feitas nos bornes dos detectores, acionadores, avisadores (sirenes e/ou strobes) ou em caixas terminais com bornes apropriados.

Devido a essa atualização NÃO devem ser utilizados cabos blindados no barramento multiplex, pares trançados são aceitáveis, porém, não são recomendáveis.

Tucano Comércio de Alarmes e Sistemas Eletrônicos Ltda www.tucanobrasil.com.br tucano@tucanobrasil.com.br Fone/fax: (41) 3286-2867

Segue abaixo a tabela que deve ser utilizada como referência do cabeamento:

Impedância Máxima: 50Ω a 20°C nominal		
Bitola	Distância (aproximada)	
1,0 mm ²	1170 m	
1,5 mm ²	1810 m	

Segue abaixo a tabela de especificações elétricas dos cabos:

Especificações do cabo a uma temperatura de 20°C		
Bitola	18 AWG = 1.0 mm^2	16 AWG = 1,5 mm ²
Resistência de 1 condutor/km	21 Ω/km	12,6 Ω/km
Capacitância nF/km a 1kHz	95	105
Indutância mF/km a 1kHz	0,524	0,492

Segue abaixo a fórmula para o cálculo para a correção da resistência elétrica em caso de temperaturas médias acima de 20°C:

$$Rt_{1000} = R20 \over K_t$$
 onde K_t cobre = $254,5 \over 234,5+t$ (constante)

Assim temos:

 R_{20} = Resistência elétrica do condutor a 20 $^{\circ}$ C, em Ω /km.

R_{t1000} = Nova resistência elétrica para 1000m deste condutor.

K_t = Coeficiente de correção de temperatura do cobre ao valor de temperatura ambiente, obtida durante a realização do ensaio.

Exemplo:

O cabo escolhido possui 17 Ω /km a 20°C, este será instalado em um ambiente com temperatura média de 45°C. Qual é o valor da Ω /km deste cabo nesta temperatura?

Rt₁₀₀₀ =
$$\frac{17}{0,9105}$$
 => Rt_{1000} = 18,67 Ω /km

Resultado: A resistência do cabo a 45° C é de $18,67~\Omega$ /km

Obs.: As instalações realizadas fora do padrão recomendado neste boletim técnico podem apresentar problemas fixos e/ou intermitentes, porém, neste caso a Robert Bosch Limitada se exime de quaisquer responsabilidade.